Why do I need this?

CONTACT US

 

US Presidential Policy puts the United States on an aggressive trajectory for returning to the moon by 2022.  COVID-19 has inhibited traditional working practices for many aerospace companies. Redmoon Systems aims to provide a consulting force capable of filling in the necessary gaps to enable America to achieve the Presidential goals in space.

What are we selling?

Our team has a history of innovation within the US Space program. We have staffed programs for the Department of Defense as well as NASA at companies such as Lockheed Martin, Raytheon, Boeing, and Northrop Grumman. Some examples of technologies pioneered by our engineers are

  • Advanced radar tracking algorithms for the F-18 aircraft
  • Infrared on-orbit cameras for NASA missions
  • Missile and re-entry vehicle tracking systems and technologies,
  • Space debris detection tracking and removal technologies
  • Many others

Our team is standing by to enable you to meet your aerospace and defense research goals.

Reviewing Proposals for Commercial Space Partnerships

John Chriton clicked the save button on his laptop, making sure his document was secured before getting up from his desk for a cup of Yuban coffee. Coffee was an important part of his work at the Air Education and Training Command headquarters, where he was tasked with reviewing proposals from industry on commercial space partnerships. Some of the topics included on-orbit manufacturing and repair propulsion and maneuvering, ground infrastrcture components, power collection, storage, and transmission, space domain awareness, in-space data centers, and modular space robotics.

Space Transport: Reflections at High Altitude

Military green radar. Screen with target. Futuristic HUD interface. Redmoon Systems illustration.

Smith checked his HUD for target signatures. He came up with nothing. A quick glance at the console to his left showed that an alert had gone out for quick reaction force deployment deep in the theater. The quick reaction forces, sometimes called agile forces, were often deployed via hypersonic transport. He had never heard of a space to ground deployment before.
He thought back to the technology behind ICBMs, where a re-entry vehicle was deployed by a missile that had entered Earth’s orbit. The total time for delivery of payload to target was much shorter doing it that way than if a cruise missile was used.

Could it be possible that the Space and Missiles Systems Center, Pacific Air Forces (PACAF), or the Air Education and Training Command (AETC) might launch a crew along the path of an ICBM in the interest of developing a transport and deliery system with a greater global reach? How did this compare with the new hypersonic transport vehicles?

A space resupply system providing space transport to support government agencies typically involved items fabricated using rapid prototyping methods. USAF communcication channels indicated that these methods were in place for supporting the warfighter, thereby providing a strategic advantage that could scale to support combat and battlespace grade logistics.

Bagram’s Quick Reaction Force dismounts from a CH-47 Chinook helicopter during their static load training.

Creating Satellite Constellations Using Quantum Computing

Summary: Group satellite together in such a way as to maximize coverage
Data: For any possible grouping of satellites, a coverage percentage
Goal: Assign each of N satellites to k groups, such that total mean coverage is maximized

Satellites change position and require constant reoptimization

Brute force solving is out of the question; even trivial subsets of the satellites form too many combinations to check
Quantum technology offers a promise to perform combinatorial optimization much faster, while yielding better coverage outcomes

An operation involving a large number of ground and space assets

This type of situation is common in the internet communications field as well where satellite coverage may be required to provide persistent coverage of subscribers.

Redmoon Systems has an optimization technology which is able to achieve 15% more coverage than any existing method. Our software zeroes in on the best possible constellation configuration for any specific satellite and ground target problem.

Featured below are our preliminary results:

 

An update on new methods for creating satellite constellations

 

The above presentation discusses a problem that is present in the satellite industry. There is a solution to this problem involving advanced computing technologies operated by NASA. We have partnered with NASA and DWave Systems to serve as a contact point for this particular solution. If you are interested, please email us
at

Ways to conserve fuel in space

 

What is this?

The above presentation was put together using NASA’s General Mission Analysis Tool software. We wanted to find out exactly how much fuel was being used for different NASA missions. We were hoping to baseline our navigation software so that we could see which areas needed improvement.

 

Conclusions

 

We learned that electric propulsion could be used in conjunction with our navigation software to enable a fine level of control and steering. This also boosts efficiency and enables long mission duration, resulting in more space exploration potential. This technology has actually been demonstrated in practice in the Dawn and Deep Space 1 missions. Our aim is to extend the applicability of a proven technology to *OTHER* types of missions and economic market sectors within space exploration.

How to improve accuracy in remote sensing

A short presentation provided Jenny Fleury’s perspective on the Firecat Mars Mission and discusses the synergies made possible by combining measurements from optical and radar systems. Basically the optical provides information that the radar sensor network doesn’t provide, and vice versa.

Typically, the optical sensor provides a spatial resolution map and can be used to identify visible features. The radar can be used to obtain range and range rate (distance and velocity along the line of sight).

What if alternate sensor nodes were include in the the Firecat Mars mission? One way to do this would be to deploy a space based radar payload in solar orbit just outside the asteroid belt. This mission could enable range mapping of the asteroid belt, which is a valuable endeavor because it can be used to calibrate the optical system located on mars. Once the orbits are accurately determined using the radar data, the image processing could simplified for Firecat to yield better spectral ID (noise reduction based on range information).

In other worlds the signal levels coming from the asteroids to the mars optical sensor remains low compared to the Firecat moon-earth sensing mission, however a significant reduction in noise levels from the mars radar would boost the effective signal to noise ratio, thereby improving accuracy.

 

How intuition can be inreased in astronomy and physics

At Redmoon Systems, we are exploring the connection between quantum mechanics and classical mechanics in the context of space dynamics, exploration and mission architecture. Typically when missions are planned, the usual approach is to determine motion of bodies (the spacecraft itself as well) involving patched conic solutions for the the nearest gravitational sphere of influence. This article by Esther Barrabés Vera describes a gentle shift in perspective.

Another approach is to think of the potential of a body as its wave function, in analogy to quantum theory. A planet may pass through space that is sometimes occupied by a planet with or without the planet actually being present. Depending on the circumstances or timing, the spacecraft may experience gravitational forces related to the gravitational potential energy of the planet. If this occurs, the spacecraft may attempt to capture into the potential well of the planet. The potential energy required to capture the spacecraft is like a wavefunction, or a slightly delocalized version of the classical model of reality.

The reason why this could be important is that underneath the traditional model of gravity is a more complex and rich universe! This relatively newly accessed regime is the realm of space manifold dynamics.

Taking into consideration two planets at the same time enables a more complex dance for a spacecraft of satellite. The mathematics to describe this type of interaction is fairly sophisticated and also reasonably well developed. By analogy, the difference is between the motion of a surfer on the ocean, diving in between waves compared against the motion of billiard balls on a pool table. The analogy is not precise, however it is worth noting that the dance of eternity takes place in our solar system with natural objects such as comets and meteors.

Studying these objects has helped open doors for us to see the complex movements in action, so that we can reproduce their motion in our mathematical models, and ultimately in our exploration of the galaxy. This all has nothing to do with quantum mechanics or quantum behavior, most people would assert.

However my goal is not to show evidence of quantum effects such as tunneling, entanglement, or teleportation of these macroscopic objects. I would simply like to consider the possibility that a gravitational potential could be interpreted as a wavefunction of a planet or star. What use this perspective has beyond a form of intuition has not been determined as yet.

Using the moon to inspect space debris

The Firecat Moon mission involves placing a remote passive sensor (i.e. robotic telescope) on the moon at a location that has visibility of the LEO, MEO, and GEO terrestrial debris. Sunlight bouncing off the surface of the debris will provide optical signal for the sensor. Our goal is to detect, track, and characterize debris objects based on this information. Our proof of concept study simulated the amount of light reaching the telescope, and found that there is a lot of radiation present. Here is the analysis:

One noise source for the Firecat Moon Mission is the Earth limb radiating in the background. It seems reasonable that from the moon, the Earth only subtends a pretty small angle, so would rarely be a background clutter source. Earth shine scattered off of your optics if looking too close to earth limb might be a bit of a problem, but more a noise source than anything else. So I think Firecat has just a standard GEO debris tracking problem, except that the range from the moon is probably a bit farther than what most missions require. The photon signal level will determine the detector’s integration time.

 

There is roughly a 15 percent increase in signal level for the GEO debris as compared to the LEO debris.

Professor Madhu Thangevelu from USC has numerous alternatives to complement this particular moon mission. Catch some of his advanced concepts online here!